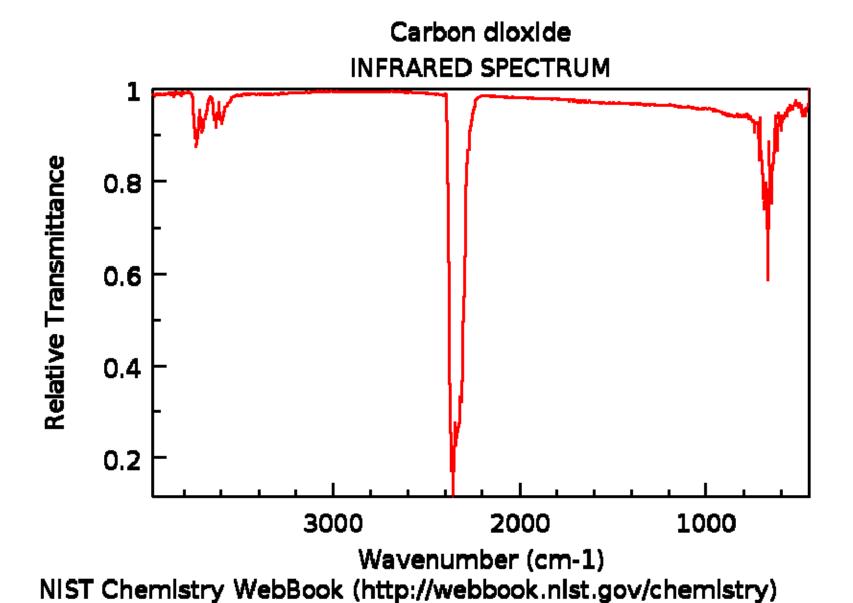
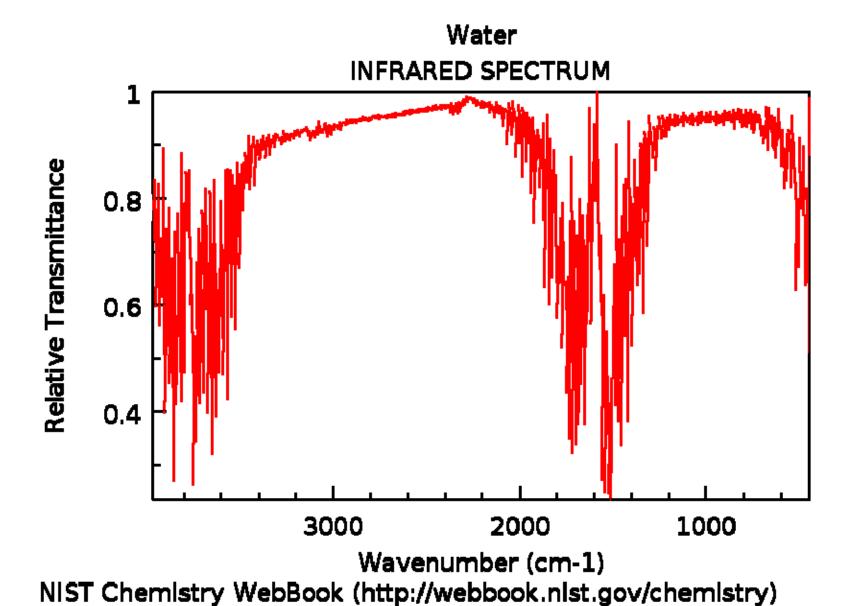


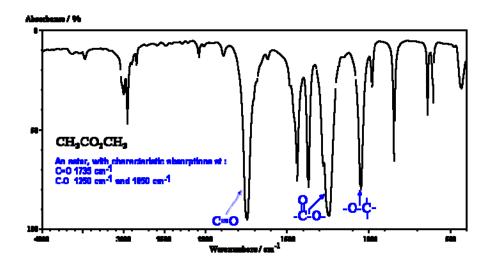

### Interferometer

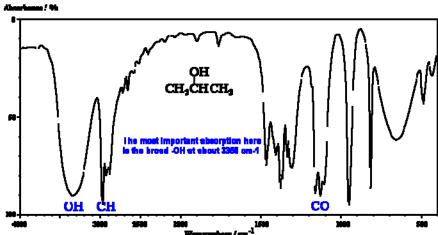


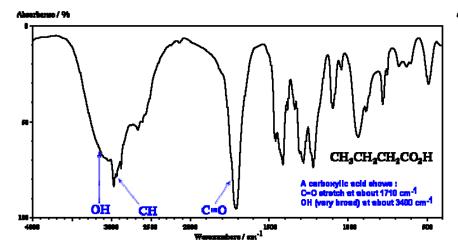


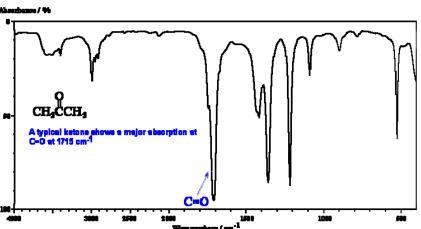


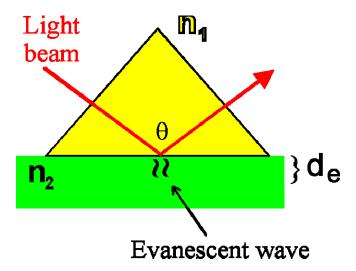



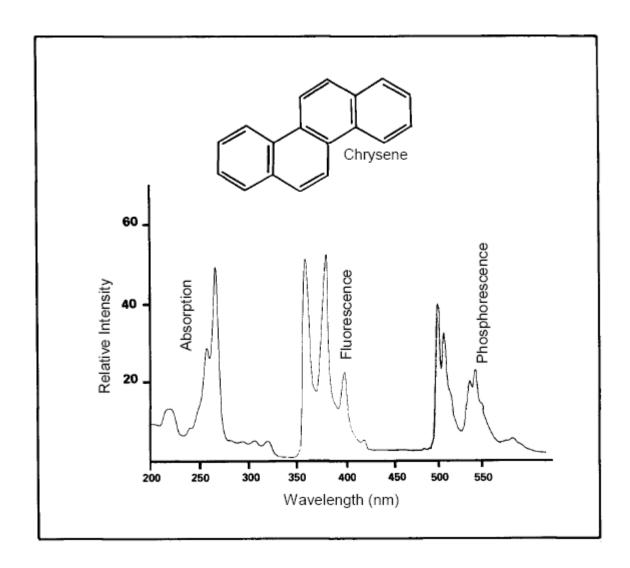


**Table 6.3** Typical bond-stretching and angle-bending group vibration wavenumbers  $\omega$ 


| Bond-stre                                                                                                                          | etching            | Bond-st             | retching                | Angle-bending                          |                           |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|-------------------------|----------------------------------------|---------------------------|--|--|--|--|
| Group                                                                                                                              | ω/cm <sup>-1</sup> | Group               | $\omega/\text{cm}^{-1}$ | Group                                  | $\omega/\mathrm{cm}^{-1}$ |  |  |  |  |
| ≡с−н                                                                                                                               | 3300               | C≡N                 | 2100                    | <u></u> C−H                            | 700                       |  |  |  |  |
| =c <h< td=""><td>3020</td><td><del>&gt;</del>c−ғ</td><td>1100</td><td><math>= c &lt;_{\rm H}^{\rm H}</math></td><td>1100</td></h<> | 3020               | <del>&gt;</del> c−ғ | 1100                    | $= c <_{\rm H}^{\rm H}$                | 1100                      |  |  |  |  |
| except:<br>O=C H                                                                                                                   | 2800               | <b>&gt;</b> c−cı    | 650                     | $-C \overset{H}{\overset{H}{_{\sim}}}$ | 1000                      |  |  |  |  |
| <b>&gt;</b> с−н                                                                                                                    | 2960               | ⇒c– <sub>Br</sub>   | 560                     | $\searrow \subset \circlearrowleft^H$  | 1450                      |  |  |  |  |
| c≡c                                                                                                                                | 2050               | <del>-&gt;</del> c⊢ | 500                     | c <b>≦c</b> -c                         | 300                       |  |  |  |  |
| >c=c<                                                                                                                              | 1650               | —о-н                | 3600a                   |                                        |                           |  |  |  |  |
| >c-c\(-                                                                                                                            | 900                | >n−н                | 3350                    |                                        |                           |  |  |  |  |
| Şsi–si€                                                                                                                            | 430                | <b>→</b> P=0        | 1295                    |                                        |                           |  |  |  |  |
| >c=o                                                                                                                               | 1700               | >s=o                | 1310                    |                                        |                           |  |  |  |  |

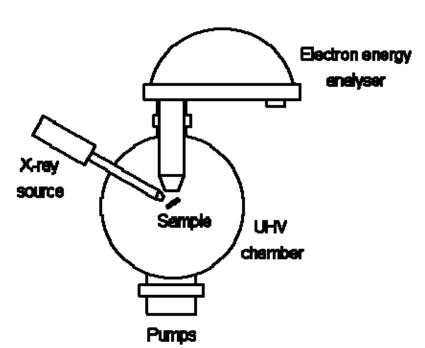

<sup>&</sup>lt;sup>a</sup> May be reduced in a condensed phase by hydrogen bonding.

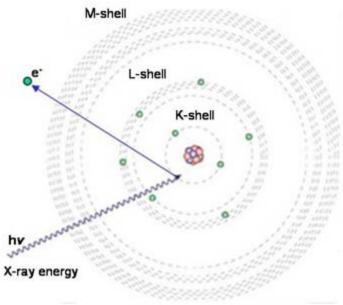


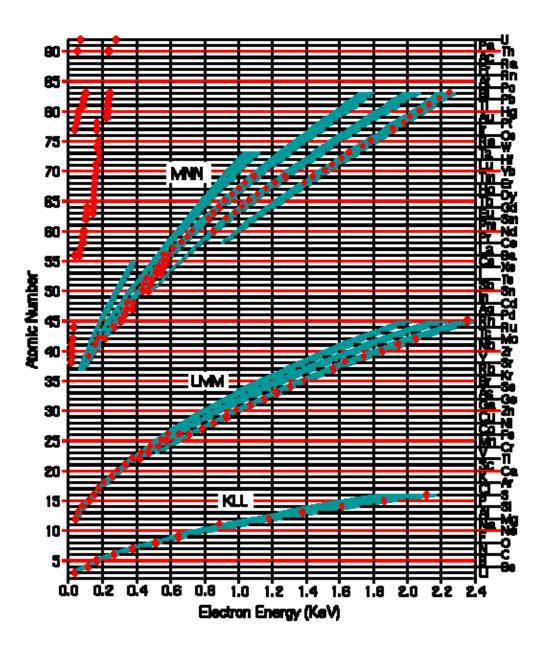



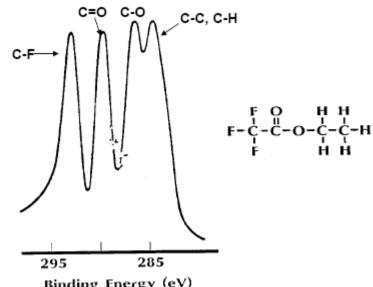


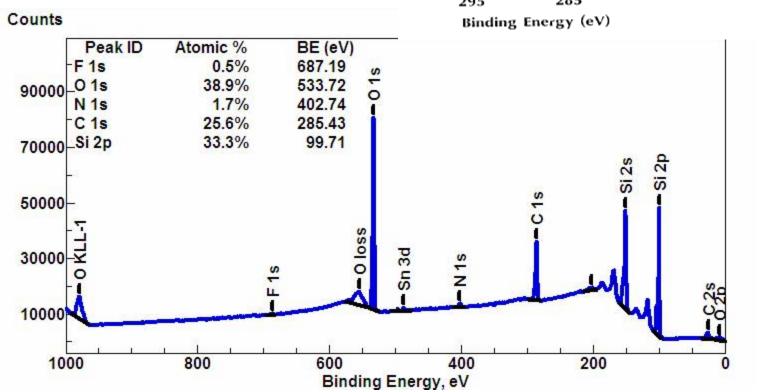







### Photoelectron Spectroscopy






| The first of the control of the first of the |                                                          |                               |                               |                            |                                                              |                          |                           |                                                      |                             | 35.0 eV<br>rencing<br>18<br>2 He 1s<br>Hee//Be Hee// |                        |                                                      |                         |                        |                          |                          |                                        |                          |                                                              |                          |                 |                          |                                    |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------|-------------------------------|----------------------------|--------------------------------------------------------------|--------------------------|---------------------------|------------------------------------------------------|-----------------------------|------------------------------------------------------|------------------------|------------------------------------------------------|-------------------------|------------------------|--------------------------|--------------------------|----------------------------------------|--------------------------|--------------------------------------------------------------|--------------------------|-----------------|--------------------------|------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                        |                               |                               |                            |                                                              |                          |                           | –                                                    |                             | 7                                                    |                        |                                                      |                         |                        |                          |                          |                                        |                          | 13                                                           |                          | 14              | 1                        | 5                                  | 16                                                 | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |
| 3 Li 1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 Be 1s                                                  | ]                             |                               |                            |                                                              |                          | umber of E                |                                                      |                             |                                                      | -                      | nal for Eler<br>n Oxide or                           |                         |                        | and of Fla               | ment                     |                                        | Γ                        | 5 B1s                                                        |                          | C 1s            | 7 1                      |                                    | 8 O 1s                                             | 9 F 1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 Ne 1s                       |
| Li° LiOH<br>54.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Be° BeO                                                  | ł                             |                               |                            |                                                              | E of Al" u               | nder Native               | Oxide 7                                              | 2.9 74.3                    | Al (2p                                               | o3) BE of              | Major Oxi                                            | de Spec                 | ies in Pure            | Oxide                    |                          |                                        | ŀ                        | B° B2O3<br>187.5 194.0                                       | 284.5                    | Black<br>284.4  | Kaptor<br>400.9          | 398.9                              | CuO Si<br>529.7 53                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| (1.65)<br>285.0<br>531.8<br>(1.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.79) (1.73)<br>286.1 285.0<br>111.88 531.3             |                               | С                             | (1s) BE of                 | Al (2p3) FWH<br>Hydrocarbons<br>ble Reference<br>Al (2p3) FW | Captured<br>BE for lo    | by Ion Etc<br>n Etched, i | hed Al" 284<br>Pure Al" 72                           | 1.7 285.0<br>82 531.1       | C (1s<br>O (1s                                       | BE Defi                | M of Major<br>Ined to be<br>Major Oxyg<br>of Major C | at 285.0<br>en Spec     | eV<br>ies in Pure      | Oxide                    |                          |                                        |                          | (0.87) (2.40)<br>285.2 285.0<br>187.8 532.5<br>(1.03) (2.22) | (0.42)                   | (1.04)          | (1.31)<br>285.0          | (1.10)<br>285.0<br>191.3<br>(1.03) | (0.98) (1.4<br>284.9 28<br>934.0 10<br>(1.42) (1.7 | 5.0 285.0 28<br>3.0 291.9 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.0<br>3.1                     |
| 11 Na 1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.69) (1.47)<br>12 Mg 2p                                | Energy res                    | olution setting               | s for pure                 | ferenced to a<br>oxide data gav                              | dventitious<br>e FWHM    | s hydrocart               | ion with C (1s)<br>or Ag (3d5) of i                  | BE at 285.0e                | eV.                                                  | The FWH                | HM and BE                                            | values<br>two SSI       | presented<br>XPS syste | in this tabl             | e were all               | l obtained l                           | y                        | 13 Al 2p3                                                    |                          | Si 2p3          |                          | 2p3                                | 16 S 2p                                            | 3 17 CI 2 <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 18 Ar 2p3                    |
| Na° NaCl<br>1072.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mg° MgO<br>49.7 49.5                                     | All non-cor<br>C (1s) BEr     | ductors were<br>for "hydrocar | analyzed w<br>rbons" on el | ith the Flood-0<br>lements were                              | Sun Mesh<br>collected    | Screen 0.5<br>from carbo  | 5-1.0 mm abow<br>n captured by i                     | the specim<br>on etched eli | ements.                                              | monochro               | solution li<br>omatic Alu                            | minum )                 | K-ray source           | es which I               | have a the               | eoretical                              | ŀ                        | AI° AI2O3<br>72.9 74.3                                       | Si°                      | SiO2            | P°<br>130.13             | InP<br>128.8                       | S° Mos<br>164.0 162                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| (1.40)<br>285.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.58) (1.63)<br>286.5 285.0                             | Energy res                    | olution setting               | s for ion et               | ched elements                                                | gave FV                  | VHM < 0.50                | 0 hours after io<br>eV forAg (3d5)<br>eV, and Au(4f7 | of ion etche                | d Ag*.                                               | elements               | can be us                                            | sed as re               | eliable sec            | ondary en                | ergy refer               | ion etched<br>ence value<br>are <±0.15 | eV/                      | (0.62) (1.41)<br>284.7 285.0                                 | (0.57)<br>285.3          | (1.14)<br>285.0 | (0.67)<br>285.0          | 285.0                              | (0.72) (0.3<br>285.0                               | 285.0 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0 285.0                      |
| 199.3<br>(1.19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49.77 529.8<br>(0.60) (1.99)                             | 3                             | 4                             |                            | 5                                                            | (35) at 12               | 6                         | 7                                                    |                             | 8                                                    |                        | 9                                                    |                         | 10                     | 1                        |                          | 12                                     |                          | 72.82 531.1<br>(0.41) (1.56)                                 | 99.35<br>(0.45)          | 532.5<br>(1.40) |                          | 444.7<br>(0.78)                    | 229<br>(0.8                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0                            |
| 19 K 2p3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 Ca 2p3                                                | 21 Sc 2p3                     | 22 Ti 2                       |                            | 3 V 2p3                                                      |                          | Cr 2p3                    | 25 Mn 2p                                             |                             | Fe 2p3                                               | 27 C                   |                                                      |                         | Ni 2p3                 | 29 C                     |                          | 30 Zn                                  |                          | 31 Ga 3d5                                                    |                          | Ge 3d5          | 33 A                     |                                    | 34 Se 3d                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| K° KI<br>293.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ca° CaO<br>346.5 347.1                                   | Sc° Sc2O3<br>398.6 401.9      | Ti° Ti                        | 58.7 5                     | V2O5<br>12.2 517.3                                           | _                        | Cr2O3<br>575.7            | Mn° MnO<br>638.7 641                                 | -                           | Fe2O3<br>709.8                                       |                        | 779.5                                                | Ni°<br>852.6            | NiO<br>853.8           | Cu°<br>932.7             | 932.5                    | 1021.8                                 | ZnO<br>1021.7            | Ga° Ga2O3<br>18.7 20.7                                       | Ge°                      | GeO2<br>33.2    | As° 41,8                 | As2O3<br>45.1                      | Se° SeO:<br>54.8 59.                               | 3 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 86.94                        |
| (1.11)<br>285.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (7) (1.81)<br>284.6 285.0                                | (0.9) (1.27)<br>285.8 285.0   | (0.90) (<br>285.2 2           | (1.09) (0<br>285.0 21      | 0.79) (1.32)<br>85.0 285.0                                   | (1.05)<br>284.6          | (1.20)<br>285.0           | (1.00) (1.1<br>286.4 285                             | (0.90)<br>0 284.9           | (1.32)<br>285.0                                      | (0.99)                 | (1.39)<br>285.0                                      | (1.14)                  | (1.42)                 | (1.22)<br>284.6          | (1.10)<br>285.0          | (1.10)<br>284.8                        | (1.50)<br>285.0          | (0.70) (1.37)<br>285.0 285.0                                 | (0.68)<br>285.0          | (1.49)<br>285.0 | (0.67)<br>284.5          | (1.26)<br>285.0                    | (0.76) (1.05<br>284.2 285.                         | 0 (0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0 285.0                       |
| 619.2<br>(1.30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 346.5 531.5<br>(1.07) (1.57)                             | 398.46 530.0<br>(0.69) (1.33) |                               | 530.0 51<br>(1.18) (0      | 2.22 530.2<br>(1.33)                                         | 574.37<br>(0.89)         | 530.1<br>(1.24)           | 638.74 529<br>(0.89) (1.0                            |                             | 532.9<br>(1.05)                                      | 778.26<br>(0.85)       | 530.1<br>(1.00)                                      |                         | 5 529.4 (1.03)         | 932.68<br>(0.92)         | 530.5<br>(1.01)          | 1021.76<br>(0.97)                      | 530.5<br>(1.11)          | 18.5 531.3<br>(0.60) (1.51)                                  | 29.28<br>(0.64)          |                 | 41.69<br>(0.67)          | 532.0<br>(1.41)                    | 54.90 532.<br>(0.78)                               | 6 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
| 37 Rb 3d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38 Sr 3d5                                                | 39 Y 3d5                      | 40 Zr                         | 3d5 4                      | Nb 3d5                                                       | 42 1                     | No 3d5                    | 43 Tc 3d                                             | 5 44 F                      | Ru 3d5                                               | 45 R                   | Rh 3d5                                               | 46 P                    | d 3d5                  | 47 A                     | g 3d5                    | 48 Cd                                  | 3d5                      | 49 In 3d5                                                    | 50                       | Sn 3d5          | 51 S                     | b 3d5                              | 52 Te 3d                                           | 53 I 3d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54 Xe 3d5                      |
| Rb° RbOAc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sr° SrCO3                                                | Y° Y2O3<br>155.9 156.6        |                               |                            | b° Nb2O5<br>02.1 207.4                                       |                          | MoO3                      | Tc°                                                  | 100                         | RuO2                                                 |                        | Rh2O3                                                | Pd°<br>335.1            | PdO                    |                          | Ag2O                     |                                        | CdO                      | In° In2O3                                                    | Sn°<br>484.9             | SnO2<br>487.3   | _                        | Sb2O5                              | Te° TeO<br>572.8 576                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Xe+/Be Xe+/6<br>9.2 669.6      |
| (1.40)<br>285.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1.63)<br>285.0                                          | (0.80) (1.25)<br>286.0 285.0  | (0.90) (                      | 1.18) (0                   | .78) (1.14)<br>85.0 285.0                                    | 227.8<br>(0.66)<br>285.4 | 233.1<br>(1.05)<br>285.0  | CORCUNE                                              | 280.0<br>(0.67)             |                                                      | (0.73)                 | 308.9<br>(0.80)<br>285.0                             | (0.86)                  | (0.97)                 | 368.2<br>(0.64)<br>284.7 | 367.5<br>(1.00)<br>285.0 | (0.90)                                 | 404.0<br>(1.38)<br>285.0 | 443.8 444.3<br>(1.08) (1.26)<br>284.9 285.0                  | (0.81)                   |                 | 528.2<br>(1.0)<br>284.6  | 529.8<br>(1.10)<br>285.0           | (1.12) (1.2<br>284.2 285                           | 7) (1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.2<br>30) (1.13)<br>5.0 285.0 |
| 530.9<br>(1.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 531.5<br>(1.9)                                           | 155.92 531.0<br>(0.62) (1.30) | 178,80 5                      | 30.3 20                    | 2.35 530.4<br>(57) (1.36)                                    | 227.94                   | 531.0                     | R800-                                                | 280.11                      | 529.7                                                | 307.21                 | 530.5                                                | 335.10                  | 530.7                  | 368.28 (0.62)            | 529.4                    | 405.04                                 | 528.6<br>(1.28)          | 443.87 529.9<br>(0.71) (1.19)                                | 485.01                   | 531.1           | 528.26<br>(0.80)         |                                    | 572.97 530<br>(0.83) (1.3                          | .7 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.2                            |
| 55 Cs 3d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56 Ba 3d5                                                | 57 La 3d5                     | 72 Hf                         | 4f7 7                      | 3 Ta 4f7                                                     | 74                       | W 4f7                     | 75 Re 4f                                             | 7 76 0                      | Os 4f7                                               | 77 I                   | lr 4f7                                               | 78                      | Pt 4f7                 | 79 A                     | u 4f7                    | 80 Hg                                  | 4f7                      | 81 TI 4f7                                                    | 82                       | Pb 4f7          | 83                       | Bi 4f7                             | 84 Po 4f7                                          | 85 At 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 86 Rn 4f7                    |
| Cs° CsCl<br>724.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ba° BaOAc                                                | La° La2O3                     | Hf° H                         | 10                         |                                                              | -                        | WO3                       | Re° Re20                                             |                             | OsO4                                                 |                        | lrO2                                                 |                         | PtO2                   | _                        | Au2O3                    | -                                      | HgO                      | TI° TI2O3                                                    | Pb°                      | PbO             | _                        | Bi2O3                              |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| (2.08)<br>285.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 780.0<br>(1.80)<br>285.0                                 | 834.7<br>(3.0)<br>285.0       | (0.63) (<br>285.7 2           | 1.26) (0<br>285.0 28       | 1.8 26.8<br>.80) (1.12)<br>35.0 285.0                        | 285.3                    | (1.01)<br>285.0           | 40.3 46.<br>(0.67) (1.6-<br>285.3 285.               | (a)<br>(b)                  |                                                      | 284.4                  | 62.0<br>(0.98)<br>285.0                              | 71.0<br>(0.96)<br>284.3 | (1.16)<br>285.0        | 84.1<br>(0.83)<br>284.1  | 88.1<br>(1.12)<br>285.0  | 285.0                                  | (1.06)<br>285.0)         | 117.8 117.4<br>(0.97) (1.01)<br>285.1 285.0                  | 136.9<br>(0.67)<br>284.9 | (1.10)<br>285.0 | 157.0<br>(0.73)<br>284.6 | 158.8<br>(1.11)<br>285.0           | 2 adjoactive                                       | and the control of th | odicactive                     |
| 199.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 531.4<br>(1.83)                                          | 529.2<br>(1.6)                |                               |                            | 1.78 531.0<br>.56) (1.46)                                    |                          | 530.6<br>(1.27)           | 40.30 532<br>(0.54) (1.5                             |                             |                                                      |                        | 530.2<br>(0.97)                                      | 71.15<br>(0.88)         |                        | 83.98<br>(0.68)          | 531.6<br>(1.13)          |                                        |                          | 117.77 528.9<br>(0.66) (1.10)                                | 136.95<br>(0.63)         | 528.9<br>(1.07) | 157.05<br>(0.62)         | 529.6<br>(1.58)                    | Ψ.                                                 | - Qu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dry.                           |
| 87 Fr 417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | XPS International LLC: www.xpsdata.com  B. Vincent Crist |                               |                               |                            |                                                              |                          |                           |                                                      |                             |                                                      |                        |                                                      |                         |                        |                          |                          |                                        |                          |                                                              |                          |                 |                          |                                    |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| and the last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -active                                                  | detive                        |                               |                            |                                                              |                          |                           |                                                      |                             |                                                      |                        |                                                      |                         |                        |                          |                          |                                        |                          |                                                              |                          |                 |                          |                                    |                                                    | Last Update                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
| Radio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q. addito                                                | Rada                          | 3 I                           | 58 Ce 3<br>Ce° Ce(         |                                                              | Pr 3d5<br>Pr2O5          | 60 N                      |                                                      | Pm 4d5<br>Pm2O3             | 62 Sr<br>Sm° S                                       | m 4d5<br>m2O3          | 63 Eu                                                | u 4d5                   | 64 G                   | d 4d5<br>3d2O3           | 65 T                     | b 4d5<br>Tb3O7                         | 66 Dy                    | - 1                                                          | Ho 4d5                   |                 | r 4d5<br>Er2O3           |                                    | m 4d5 70<br>Tm2O3 Yb <sup>4</sup>                  | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lu 4f7                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                               | <b>"</b>                      | 88                         | 2.1 (931.98                                                  | 933.1                    | (980.86)                  | FIII                                                 |                             |                                                      | (134.9)                |                                                      | 135.6                   | _                      | (1186.8)                 | 145.9                    | (149.9)                                | 152.4 (                  | 156.1) 159.8                                                 | 161.3                    | 167.7           | 168.5                    | 175.3                              | 176.3 1.6                                          | 7 184.9 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 8.4                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                               |                               | (2.<br>28<br>52            | 5.0                                                          | (4.4)<br>285.0<br>528.2  | 118.0                     | 0                                                    | advoactor                   |                                                      | (10)<br>285.0<br>531.7 | 284.3<br>128.18                                      | (3.7)<br>285.0<br>529.2 | 281,4<br>140,33        | (5.4)<br>285.0<br>529.0  | 146.02                   | (7)<br>285.0<br>529.5                  |                          | (7)<br>285.0<br>529.2 159.58                                 | ((6.0)<br>285.0<br>529.3 | 167.25          | (3.8)<br>285.0<br>529.2  | 285.3<br>175.37                    |                                                    | - (3.4) -<br>5.6 285.0 28<br>39) 529.4 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                               | L                             | (2.0                       | 00) (2.17)                                                   | (1.4)                    | (1.80)                    | · · · · · ·                                          |                             | (2.57)                                               | (2.4)                  | (1.08)                                               | (1.4)                   | (1.02)                 | (1.7)                    | (1.33)                   | (1.6)                                  | (1.88)                   | (1.7) (1.50)                                                 | (1.7)                    | (1.93)          | (1.9)                    | (1.92)                             | (1.7) (0.8                                         | 31) (2.0) (0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1.8)                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                               |                               | 90 Th 4                    | ************                                                 | Pa 4f7                   | 92 U                      |                                                      | 3 Np                        | 94                                                   | Pu                     | 95                                                   | Am                      | 96                     | Cm                       | 97                       | Bk                                     | 98                       | Cf 99                                                        | Es                       | 100             | Fm                       | 101                                | Md 1                                               | 02 No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03 Lr                          |
| Th¹ ThO2 U¹ U203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                               |                               |                            |                                                              |                          |                           |                                                      | 0                           |                                                      |                        |                                                      |                         |                        |                          |                          |                                        |                          |                                                              |                          |                 |                          |                                    |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                               |                               |                            | 9,000                                                        | OHCH!                    |                           | ai                                                   | dicate tra-                 | 2300                                                 | activa                 | Cation                                               | dia                     | 0.96                   | active.                  | Q actio                  | ALCO .                                 | Gadioni                  | crast                                                        | CHChi                    | Q366            | ach.                     | 2000                               | RCH.                                               | and scale California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Radioach.                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                               | L                             |                            |                                                              |                          |                           |                                                      |                             | ,                                                    |                        |                                                      |                         | ,                      |                          |                          |                                        |                          |                                                              |                          |                 |                          |                                    |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                               |                               |                            |                                                              |                          |                           |                                                      |                             |                                                      |                        |                                                      |                         |                        |                          |                          |                                        |                          |                                                              |                          |                 |                          |                                    |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |







### **Table of Characteristic IR Absorptions**

| frequency, cm <sup>-1</sup> | bond                       | functional group                                   |
|-----------------------------|----------------------------|----------------------------------------------------|
| 3640–3610 (s, sh)           | O-H stretch, free hydroxyl | alcohols, phenols                                  |
| 3500-3200 (s,b)             | O-H stretch, H-bonded      | alcohols, phenols                                  |
| 3400-3250 (m)               | N-H stretch                | 1°, 2° amines, amides                              |
| 3300-2500 (m)               | O-H stretch                | carboxylic acids                                   |
| 3330–3270 (n, s)            | -C≡C-H: C-H stretch        | alkynes (terminal)                                 |
| 3100-3000 (s)               | C-H stretch                | aromatics                                          |
| 3100-3000 (m)               | =C-H stretch               | alkenes                                            |
| 3000-2850 (m)               | C-H stretch                | alkanes                                            |
| 2830-2695 (m)               | H-C=O: C-H stretch         | aldehydes                                          |
| 2260–2210 (v)               | C≡N stretch                | nitriles                                           |
| 2260–2100 (w)               | -C≡C- stretch              | alkynes                                            |
| 1760–1665 (s)               | C=O stretch                | carbonyls (general)                                |
| 1760–1690 (s)               | C=O stretch                | carboxylic acids                                   |
| 1750–1735 (s)               | C=O stretch                | esters, saturated aliphatic                        |
| 1740–1720 (s)               | C=O stretch                | aldehydes, saturated aliphatic                     |
| 1730–1715 (s)               | C=O stretch                | $\alpha$ , $\beta$ -unsaturated esters             |
| 1715 (s)                    | C=O stretch                | ketones, saturated aliphatic                       |
| 1710–1665 (s)               | C=O stretch                | $\alpha$ , $\beta$ -unsaturated aldehydes, ketones |
| 1680–1640 (m)               | -C=C- stretch              | alkenes                                            |
| 1650–1580 (m)               | N-H bend                   | 1° amines                                          |
| 1600–1585 (m)               | C–C stretch (in–ring)      | aromatics                                          |
| 1550–1475 (s)               | N-O asymmetric stretch     | nitro compounds                                    |
| 1500-1400 (m)               | C-C stretch (in-ring)      | aromatics                                          |
| 1470–1450 (m)               | C–H bend                   | alkanes                                            |
| 1370–1350 (m)               | C-H rock                   | alkanes                                            |
| 1360–1290 (m)               | N-O symmetric stretch      | nitro compounds                                    |
| 1335–1250 (s)               | C–N stretch                | aromatic amines                                    |
| 1320–1000 (s)               | C–O stretch                | alcohols, carboxylic acids, esters, ethers         |
| 1300–1150 (m)               | $C-H$ wag $(-CH_2X)$       | alkyl halides                                      |
| 1250–1020 (m)               | C-N stretch                | aliphatic amines                                   |
| 1000–650 (s)                | =C-H bend                  | alkenes                                            |
| 950–910 (m)                 | O–H bend                   | carboxylic acids                                   |
| 910–665 (s, b)              | N–H wag                    | 1°, 2° amines                                      |
| 900–675 (s)                 | С–Н "оор"                  | aromatics                                          |
| 850-550 (m)                 | C-Cl stretch               | alkyl halides                                      |
| 725–720 (m)                 | C–H rock                   | alkanes                                            |
| 700–610 (b, s)              | -C≡C-H: C-H bend           | alkynes                                            |
| 690–515 (m)                 | C-Br stretch               | alkyl halides                                      |

m=medium, w=weak, s=strong, n=narrow, b=broad, sh=sharp



### Micro-Crystal Identification Tests for Morphine, Heroin, Dilaudid, and Cocaine

Charles C. Fulton; John B. Dalton

Journal of Criminal Law and Criminology (1931-1951), Vol. 32, No. 3. (Sep. - Oct., 1941), pp. 358-365.

#### Stable URL:

http://links.jstor.org/sici?sici=0885-2731%28194109%2F10%2932%3A3%3C358%3AMITFMH%3E2.0.CO%3B2-1

Journal of Criminal Law and Criminology (1931-1951) is currently published by Northwestern University.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at <a href="http://www.jstor.org/about/terms.html">http://www.jstor.org/about/terms.html</a>. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at <a href="http://www.jstor.org/journals/nwu.html">http://www.jstor.org/journals/nwu.html</a>.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

### MICRO-CRYSTAL IDENTIFICATION TESTS FOR MORPHINE, HEROIN, DILAUDID, AND COCAINE

#### Charles C. Fulion† and John B. Dalton‡

In the identification of small amounts of suspected drugs the most valuable tests are of two kinds: color tests on the spot-plate, and crystal tests under the microscope. The former are especially useful for compounds of phenolic character, such as adrenalin, arbutin, aspirin, and the opium alkaloids. The micro-crystal tests are particularly useful for amines, such as all alkaloids, and amides, such as phenacetin and acetanilid. This method of identification by recognition of characteristic crystals under the microscope was begun by Wormley (1), Lyons (2), Behrens (3), and others, and developed in more recent years for the alkaloids especially by Grutterink (4), Stephenson (5), and Amelink (6).

A number of the more recently developed tests, including some which were previously unpublished, will be described in the course of this paper. The photomicrographs<sup>1</sup> which accompany the text show the crystals of the four alkaloids, morphine, heroin, dilaudid, and cocaine, resulting from several of these tests. Some of the micro-crystals have been previously described (11, 12, 13, 14, 15), but until now no photographs of them have appeared in any of the literature.

The crystal tests for a particular alkaloid require selected reagents which

will most readily give highly characteristic crystals with the alkaloid in question (7, 8, 9, 10), for the usual result with a reagent and an alkaloid taken at random is an amorphous precipitate that does not crystallize at all. Generally the chosen tests are such that the crystals can be definitely recognized by mere inspection under a low power microscope (50 to 100 X). However, since many of the crystals are highly pleochroic with polarized light, or highly birefringent and beautifully illuminated with crossed nicols, it is best to use a polarizing microscope whenever available.

Either of two methods for making a crystalline test are generally employed. Method A involves dissolving the alkaloidal salt in water and adding the reagent, while with Method B the reagent is added directly to the solid alkaloid. A more detailed discussion of both procedures follows.

With Method A about 0.2 mg. or less of the alkaloidal salt is dissolved in one drop (about 0.04 cc.) of water on the microscope slide. (If the free alkaloid has been obtained by extraction or otherwise it is dissolved in dilute acid and a drop put on the slide.) One drop of a selected reagent is then added by letting it fall from a 1 cc. pipette. The precipitating compound may be in

<sup>†</sup> Associate Chemist, Alcohol Tax Unit Laboratory, U. S. Treasury Department, Saint Paul, Minnesota.

<sup>‡</sup> Criminologist, Police Department, Saint Paul, Minn.

<sup>&</sup>lt;sup>1</sup> The photomicrographs which accompany this article were prepared by John B. Dalton.

aqueous solution or in concentrated or very strong acid.

With Method B a drop of the precipitating reagent (ordinarily in strong acid) is added directly to about 0.1 mg. or less of the solid, powdered alkaloid or its salt and a cover-glass is placed over the material immediately. The alkaloid dissolves and is precipitated at varying concentrations. In this method the test-drop can be a concentrated acid (hydrochloric or phosphoric), or acid of a concentration at which the crystals form best and which might be difficult to obtain by mixing two solutions as in Method A. Formulas are given in this paper for making up directly the reagents used for Method B, but in practice they are usually obtained by suitable dilutions (to three times the volume) of the more concentrated reagents kept for Method A.

With both methods in a successful test a precipitate appears, either at once or after a few minutes' standing. Usually this precipitate is amorphous at first but crystallizes in a short time, although in some cases it is crystalline from the start. If the test is unsuccessful because of amine impurities the crystals may be distorted so as to be unrecognizable, but the more common unsuccessful result is an amorphous precipitate which fails to crystallize.

In the case of a mixture of alkaloids or amines some kind of separation—by extraction methods, for instance—is often necessary before micro-crystal tests can be applied. However, inert adulterants or dilutents, such as powdered sugar or lactose, usually do not interfere at all, except of course that

more of the material must be used to make the test.

A number of the reagents mentioned below can be used for many other alkaloids besides morphine, heroin, dilaudid, and cocaine. Thus, Stephenson's work on 51 alkaloids (5) shows that gold chloride gives especially good tests for 10 of them, platinum chloride for 6, and Wagner's reagent for 6. The newer reagents presented herein have not been so thoroughly studied. bromide in half-concentrated hydrobromic acid is certainly quite useful, yet perhaps is not as satisfactory for general use as gold bromide in concentrated hydrochloric acid, which may be the best of all identifying reagents for alkaloids.

#### Tests for Morphine

The best-known tests for morphine are those made by Method A with Marme's reagent (5, 14) and Wagner's reagent (16, 5, 14). The latter test can be varied, using Method B, to identify less than a gamma (a millionth of a gram) of morphine (15). In addition to these better known tests are several which are quite valuable.

Gold Bromide in Half-Concentrated Hydrobromic Acid. A form of this test in which gold bromide is used in concentrated HCl has been previously described (14). If the reagent is applied to the aqueous solution of morphine (Method A), threads in rosettes form gradually from the amorphous precipitate. When added to an HCl solution of morphine, or applied directly to the solid alkaloid or its salt (Method B) the reagent gives, upon standing, salmon-colored or brownish-yellow-orange

plates. These are often feathered, or form rosettes of blades or irregular plates, while with polarized light they show dichroism of pale yellow to dark red.

Now it has been found that in using Method B half-concentrated acid gives the most rapid and best crystallization. Half-concentrated HCl may be used, but HBr is better except for the deeper color of the solution. Two types of crystals are formed, needles and dichroic plates (Figure 1). As the test is quite sensitive, only a very little morphine should be used.

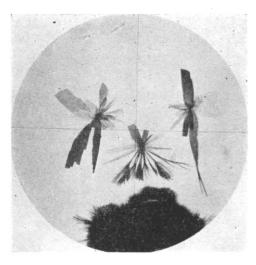



FIGURE 1

Morphine with  $HAuBr_4$  in half-concentrated HBr. Method B. (Polarized light.)

The reagent is prepared according to the following formula: Gold chloride crystals (HAuCl<sub>4</sub>3H<sub>2</sub>O)—1 gram; HBr (40%)—30 cc; Water—30 cc.

This reagent also gives an exceptionally fine test for novocaine and may likewise be used for the identification of cocaine, nupercaine, heroin, cotarnine, creatinine, hyoscyamine, scopolamine, theophylline, and other alkaloids.

In general, these different crystals can be distinguished at a glance from those of morphine and from each other although dichroic plates with scopolamine show some resemblance to those with morphine.

Platinum Bromide in Hydrobromic Acid, and Bromo-Chlorides in Hydrobromic - Hydrochloric Acid.Method B, with various ratios of HBr to HCl, morphine forms a series of different platinum crystals, but these platinum reagents give no morphine crystals in plain water, requiring instead about 60% to 100% of concentrated acid. The different types of crystals were first studied with empirical mixtures, and some of them were found to correspond quite definitely to simple molecular ratios of HBr and HCl. There are some distinctions between the crystals for each of the six possible compounds from H,PtBrCl<sub>5</sub> to H,PtBr<sub>6</sub>. H,PtBrCl<sub>5</sub> gives the most rapid crystallization, H<sub>2</sub>PtBr<sub>6</sub> the slowest.

The reagents, their formulas, and a description of the crystals are given below which, to the writers' knowledge, have never previously been described. In all instances these reagents should stand for a few days after being mixed in order to bring them to final equilibrium. The first three (1a, 1b, 2, and 3) are much more satisfactory than the last three.

1a.  $H_2PtBrCl_5$  in HCl. Platinum chloride crystals ( $H_2PtCl_6$   $6H_2O$ )—1 gram, HBr (40%)—2 cc., HCl (conc.)—46 cc., Water—12 cc. The resulting crystals are light yellow, rectangular plates, which are very highly birefrin-



FIGURE 2  $^{\circ}$  Morphine with  $H_2PtBrCl_5$  in HCl. Method B. (Crossed nicols.)

gent and form gradually on standing with little or no amorphous precipitation. Figure 2 shows these crystals photographed with crossed nicols.

1b.  $H_2PtBrCl_5$  in 1 HBr:5 HCl.  $H_2PtCl_6.6H_2O-1$  gram, HBr (40%)—12.5 cc., HCl (conc.)—35.5 cc., Water-12 cc. The crystals are similar to the preceding but deeper yellow and not so perfectly formed, and there is an amorphous precipitate before crystallization. The test, however, is a little more sensitive than with 1a.

- 2.  $H_2PtBr_2Cl_4$  in 1 HBr:2HCl.  $H_2PtCl_6$   $6H_2O-1$  gram, HBr (40%)-27.5 cc., HCl (conc.)—29.5 cc., Water—3 cc. The crystals are orange-yellow and have pointed rather than square-cut ends—that is, they have become hexagons which are more or less elongated.
- 3. H<sub>2</sub>PtBr<sub>3</sub>Cl<sub>3</sub> in 1 HBr:1 HCl. H<sub>2</sub>PtCl<sub>6</sub>·6H<sub>2</sub>O—1 gram, HBr (40%)— 35.5 cc., HCl (conc.)—18.5 cc., Water—6 cc. The crystals are orange plates,

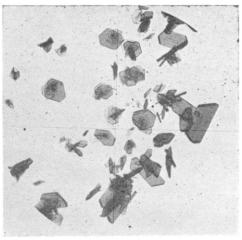



FIGURE 3

Morphine with  $H_2PtBr_3Cl_3$  in 1 HBr : 1 HCl.

Method B.

usually hexagonal but sometimes diamond or coffin-shaped. (Figure 3.)

- 4.  $H_2PtBr_4Cl_2$  in 2 HBr:1 HCl.  $H_2PtCl_6$   $6H_2O-1$  gram, HBr (40%)- 42.5 cc., HCl (conc.)—11.5 cc., Water—6 cc. This gives crystals which are orange-red, thick, and hexagonal, coffin-shaped, or diamond-shaped plates, smaller than with the preceding reagent. A few rosettes or sheaves of needles (morphine with  $H_2PtBr_6$ ) may also form.
- 5.  $H_2PtBr_5Cl$  in 5 HBr:1 HCl.  $H_2PtCl_6\cdot 6H_2O-1$  gram, HBr (40%)—52 cc., HC1 (conc.)—5 cc., Water-3 cc. The characteristic crystals are quite small diamond-shaped plates varying in color from orange to red. Usually a considerable part of the precipitate crystallizes in the morphine- $H_2PtBr_6$  needles instead.
- 6.  $H_2PtBr_6$  in HBr.  $H_2PtCl_6 \cdot 6H_2O$ —1 gram, HBr (40%)—48 cc., Water—12 cc. The crystals are small rosettes of dark red needles, nearly opaque to



Figure 4 Heroin with  ${\rm HgI_2}$  in 10% HCl. Method B.

transmitted light, but highly reflecting when illuminated with light coming obliquely from above.

#### Tests for Heroin

In the past the favorite test for heroin has been the one made with platinum chloride (16, 5). However, heroin in the illegal traffic is nowadays so grossly adulterated that this test often fails. The adulteration is chiefly with milk sugar, powdered sugar, mannitol, or other inert material, but novocaine, morphine, or other alkaloids, are sometimes present in small proportion, hence the need for more sensitive heroin tests and, if possible, some less affected by impurities.

Other old tests are with sodium carbonate, sodium phosphate, mercuric chloride, and picric acid (5). The crystals of free heroin, obtained with sodium carbonate or tri-sodium phosphate, are characteristic, but the test is even less sensitive than with platinum chloride. Mercuric chloride is more

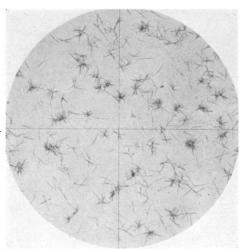



FIGURE 5
Heroin with HAuBr $_4$  in diluted H $_2$ SO $_4$ . Method A. (Extremely dilute solution.)
sensitive but less characteristic while the picric acid test, modified to the extent of using sodium picrate (13), is very sensitive.

The best tests now known for heroin are made with mercuric iodide in hydrochloric acid (13), gold bromide in sulfuric acid (8), and gold chloride in sulfuric acid (8). Below are descriptions and the first published photographs of these crystals (Figures 4, 5, and 6). Gold bromide in concentrated hydrochloric acid, and gold chloride in concentrated hydrochloric acid, can also be used (13), but do not form crystals as readily as the sulfuric acid reagents, nor are they as sensitive.

Mercuric Iodide in 10% Hydrochloric Acid. HCl (conc.)—27 cc., Water—73 cc., HgI<sub>2</sub>—to saturation. This reagent was originally used by Method A, but it has been found to give a more sensitive test by Method B. As the crystals are colorless, care should be taken that

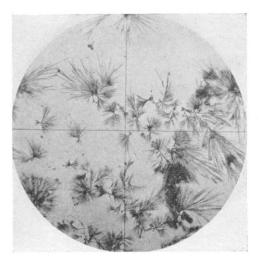
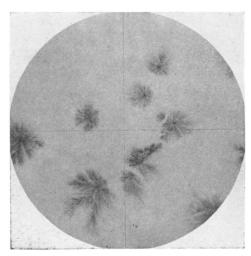




FIGURE 6

Heroin with HAuCl<sub>4</sub> in diluted H<sub>2</sub>SO<sub>4</sub>. Method A. they are not confused with crystals of undissolved material. They are slender blades and branching threads (Figure 4), and are only feebly illuminated when viewed with crossed nicols, thus appearing as pale gray "ghosts".

Gold Bromide in Diluted Sulfuric Acid. Gold chloride crystals (HAuCl<sub>4</sub>·3H<sub>2</sub>O)—1 gram, HBr (40%)—1.5 cc., Diluted H<sub>2</sub>SO<sub>4</sub> (H<sub>2</sub>SO<sub>4</sub>—2 vol., Water —3 vol.)—to make 20 cc. By using Method A this reagent gives the most sensitive crystal test known for heroin, and the best results can be obtained with a minute amount of the sample. The crystals so formed are fine needles, mostly scattered. (Figure 5.)

Gold Chloride in Diluted Sulfuric Acid. Gold chloride crytals (HAuCl<sub>4</sub>· 3H<sub>2</sub>O)—1 gram, Diluted H<sub>2</sub>SO<sub>4</sub> (H<sub>2</sub>SO<sub>4</sub> —1 vol., Water—1 vol.)—20 cc. Again Method A is used. This reagent, however, is much less sensitive than the preceding, but still superior to older



 $\begin{array}{c} \text{Figure 7} \\ \text{Dilaudid with } \text{$H_2$PtB}_6 \text{ in diluted } \text{$H_2$SO}_4. \\ \text{Method A.} \end{array}$ 

tests. The resulting crystals are rosettes of needles and are illustrated in Figure 6.

#### Tests for Dilaudid

Dilaudid (dihydromorphinone hydrochloride) is a synthetic derivative of morphine now used in medicine, and may also be used in drug addiction. The established test is with sodium nitroprusside, adding a small solid crystal of the reagent to a drop of aqueous dilaudid solution (6). In addition the following new tests are of value.

Platinum Bromide in Diluted Sulfuric Acid. Platinic chloride crystals (H<sub>2</sub>PtCl<sub>6</sub>·6H<sub>2</sub>O)—1 gram, HBr (40%) —1.7 cc., Diluted H<sub>2</sub>SO<sub>4</sub> (H<sub>2</sub>O—2 vol., H<sub>2</sub>SO<sub>4</sub>—3 vol.)—to make 20 cc.

Using Method A one drop of the reagent is applied to a drop of aqueous dilaudid solution giving orange-yellow mossy rosettes of very vague structure. Whether definitely crystals or not,

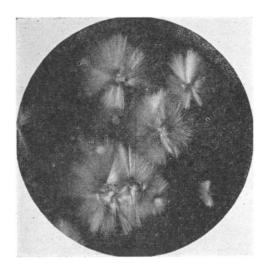



FIGURE 8
Dilaudid with  $H_2PtBr_6$  in  $HBr-H_2SO_4$  solution.
Method B. (Reflected light).

these are quite characteristic in appearance. (Figure 7.) Aqueous platinic bromide reagent gives a similar result, but with a heavier amorphous precipitate, which crystallizes more slowly.

A second technique following Method A consists of dissolving the dilaudid in a drop of diluted sulfuric acid (1 part  $H_2O$  and 1 part  $H_2SO_4$ ) instead of in water and then adding a drop of the reagent. Crystals form as fine needles in sheaves and rosettes. They are nearly opaque to transmitted light, but with light falling on them obliquely from above they are seen to be highly reflecting, with a red-gold sheen.

Platinum Bromide in Hydrobromic-Sulphuric Acid Solution. Platinic chloride crystals (H<sub>2</sub>PtCl<sub>6</sub>·6H<sub>2</sub>O)—1 gram, HBr (40%)—10 cc., Diluted H<sub>2</sub>SO<sub>4</sub> (H<sub>2</sub>O—1 vol. to H<sub>2</sub>SO<sub>4</sub>—1 vol.)—20 cc. Add a drop of this reagent to a little solid dilaudid powder and apply a cover glass. The crystals are the fine needles in sheaves and rosettes just described



Figure 9 Cocaine with  ${\rm HAuCl_4}$  in diluted Acetic acid. Method B. (Crossed nicols).

above, and are shown in Figure 8. This Method B test is much more sensitive than the preceding method.

#### TEST FOR COCAINE

The best Method A tests for cocaine, with platinum chloride (16, 5) and gold chloride (5, 6), have been known for a long time (2, 3). Gold chloride in concentrated hydrochloric acid will give better results than aqueous gold chloride—quicker and more complete crystallization with less interference from most impurities. To supplement these tests two new Method B tests are presented herewith.

Gold Chloride in Acetic Acid. Gold chloride crystals (HAuCl<sub>4</sub> 3H<sub>2</sub>O)—1 gram, glacial acetic acid—40 cc., Water—20 cc. When a drop of this reagent is added to a little solid cocaine or its salt the characteristic crystals form immediately. These are pale yellow plates, very transparent and intensely birefringent, and Figure 9 shows them photographed with crossed nicols. Un-

fortunately the photograph can give no idea of the brilliance and beauty of the interference colors.

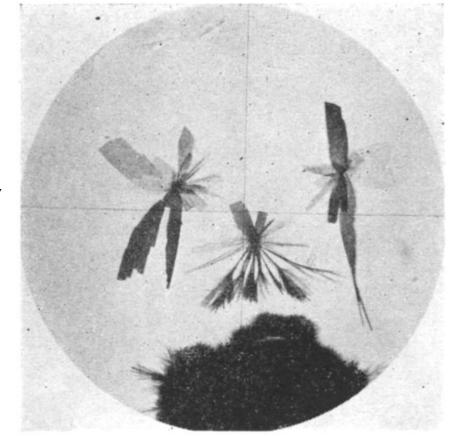
Gold Bromide in Acetic Acid. Gold chloride crystals—1 gram, HBr (40%)—1.5 cc., Diluted acetic acid (glacial acetic acid—2 vol. to H<sub>2</sub>O—1 vol.)—to make 60 cc. If a drop of the reagent is added to a little solid cocaine or its salt the crystals form immediately. They are strongly birefringent and also very highly dichroic with polarized light, showing pale straw color or light yellow when oriented in one direction, and



FIGURE 10

Cocaine with HAuBr<sub>4</sub> in diluted Acetic acid.

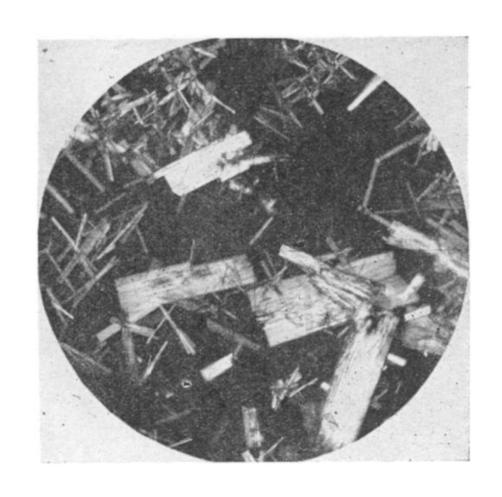
Method B. (Ordinary light).


deep orange or even red at right angles to this. By ordinary light they are light salmon where the light comes through a single crystal but orange to red where the crystals overlap with differing orientation. Figure 10, showing the crystals, was taken with ordinary light.

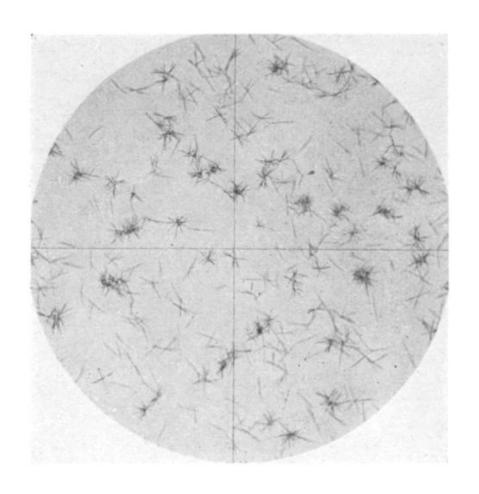
#### **BIBLIOGRAPHY**

- 1. Wormley, T. G., Microchemistry of Poisons (1869), 2nd ed. (1885).
- Lyons, A. B., "Notes on the Alkaloids of Coca Leaves," Amer. J. Pharm., 30, (October 1885).
- Behrens, H., Anleitung zur Mikrochemischen Analyse, Vol. III (1896).
- Grutterink, Alide, Beiträge zur Mikrochemischen Analyse Einiger Alkaloide und Drogen mit besonderer Berucksichtigung der Methoden von H. Behrens (1910).
- Stephenson, Charles H., Some Microchemical Tests for Alkaloids (including Chemical Tests for the Alkaloids used, by C. E. Parker), (1921).
- Amelink, F., "Schema zur Mikrochemischen Identifikation von Alkaloiden," Amsterdam (1934).
- Fulton, Charles C., "The Precipitating Agents for Alkaloids," Amer. J. Pharm. 104 (4): 244-271 (April, 1932).
- 8. Fulton, Charles C., "New Precipitating Agents for Alkaloids and Amines," Amer. J. Pharm. 112 (2 and 4): 51-64, 134-154 (Feb. and Apr., 1940).
- Fulton, Charles C., "The Identification of Alkaloids by Precipitation: I. A Natural Classification of the Alkaloids Based on Precipitation," J. Assoc. Off. Agri. Chemists, 13 (4): 481 (1930).
- Fulton, Charles C., "Alkaloids and Their Reagents," Amer. J. Pharm. 111 (5): 184-192 (May, 1939).
- Fulton, Charles C., "The Identification of Atropine with Wagner's Reagent," J. Assoc. Off. Agri. Chemists, 12 (3): 312 (1929).
- Fulton, Charles C., "The Identification of Cocaine and Novocaine," Amer. J. Pharm. 105 (7 and 8): 326-339, 374-380 (July and Aug., 1933).
- Williams, G. D., and Fulton, C. C., "The Microscopic Identification of Heroin," Amer. J. Pharm. 105 (9): 435-439 (September, 1933).
- Fulton, Charles C., "The Principal Chemical Tests for Morphine," Amer. J. Pharm. 109 (5): 219-240 (May, 1937).
- Fulton, Charles C., "Crystal Tests for Minute Amounts of Morphine," J. Lab. and Clin. Medicine, 23 (6): 622-625 (March, 1938).
- Putt, E. B., "Microchemical Tests for the Identification of Some of the Alkaloids," J. Ind. Eng. Chem. 4: 508 (1912).

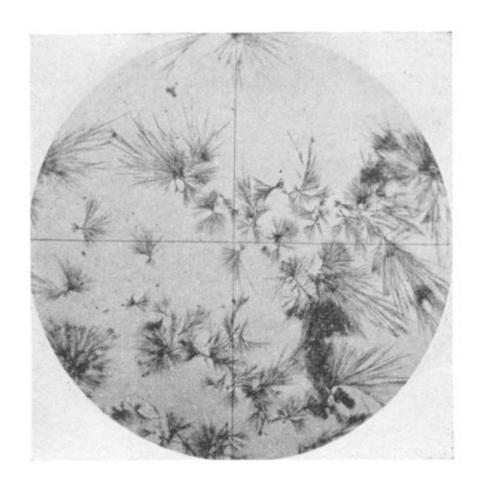
# MICRO-CRYSTAL IDENTIFICATION TESTS FOR MORPHINE, HEROIN, DILAUDID, AND COCAINE


Charles C. Fulion† and John B. Dalton‡

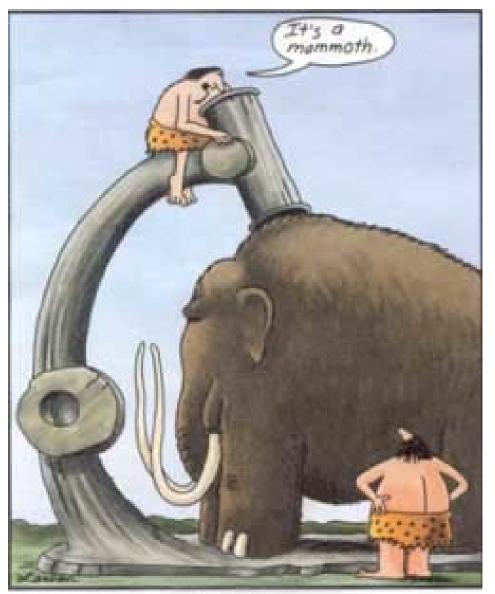



Micro-Crystal Identification Tests for Morphine, Heroin, Dilaudid, and Cocaine

Charles C. Fulton; John B. Dalton *Journal of Criminal Law and Criminology* (1931-1951), Vol. 32, No. 3. (Sep. - Oct., 1941), pp. 358-365.


Morphine with HAuBr<sub>4</sub> in half-concentrated HBr. Method B. (Polarized light.)




Morphine with H<sub>2</sub>PtBrCl<sub>5</sub> in HCl. Method B. (Crossed nicols.)



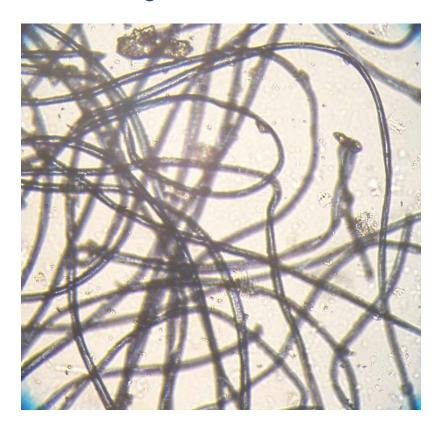
Heroin with  $HAuBr_4$  in diluted  $H_2SO_4$ . Method A. (Extremely dilute solution.)

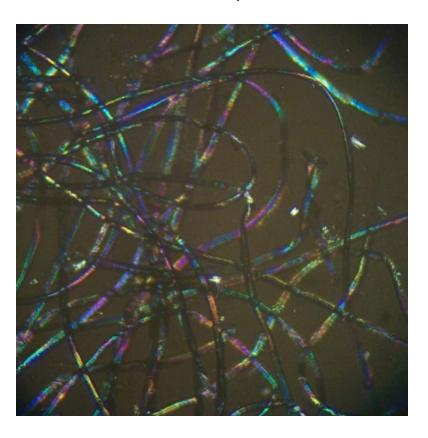


Dilaudid with  $H_2PtBr_6$  in diluted  $H_2SO_4$ . Method A.



**JUST KIDDING** 

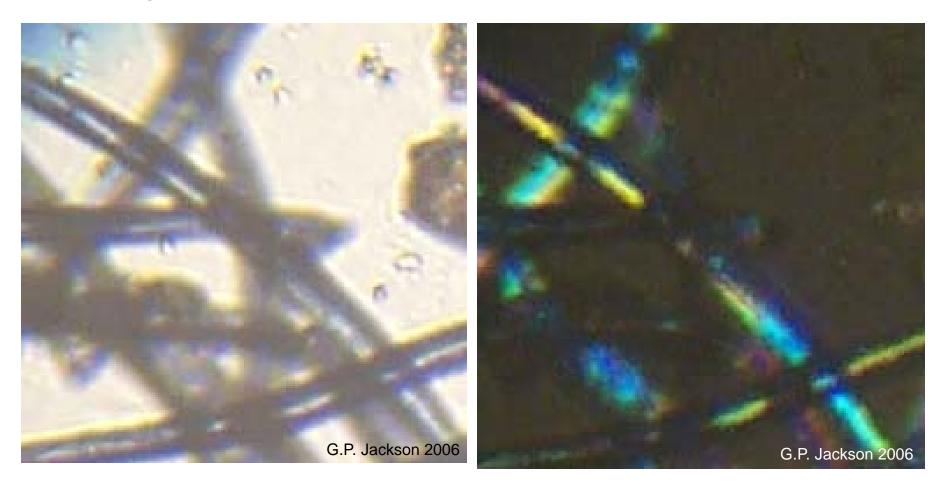




Early microscopes

### Photomicrographs of polyester fibers

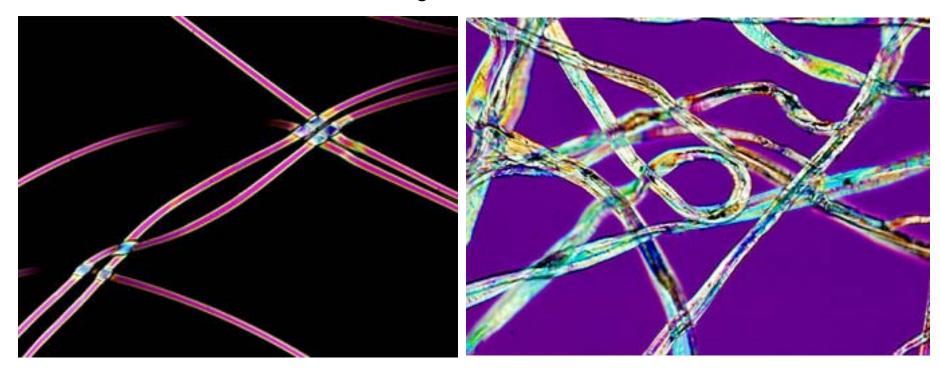
Regular transmission

crossed polars





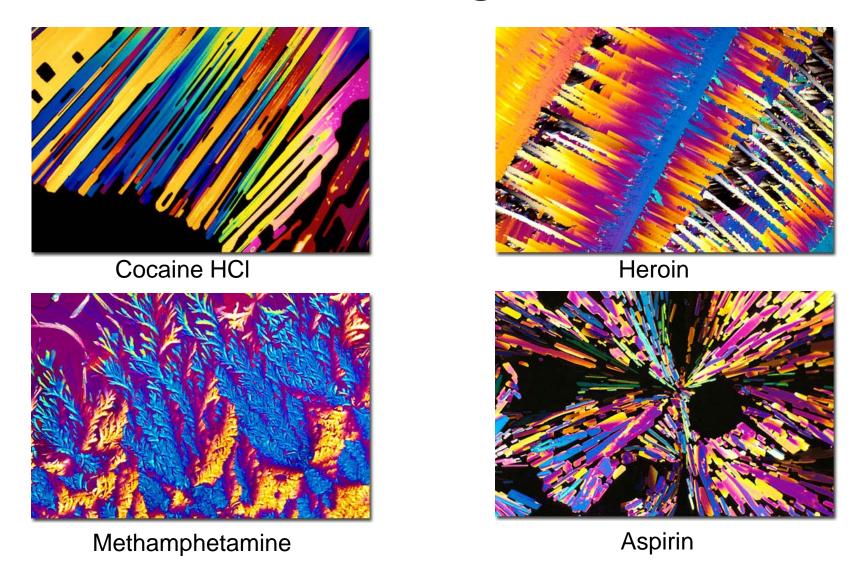

### Photomicrographs of polyester fibers


Regular transmission

crossed polars

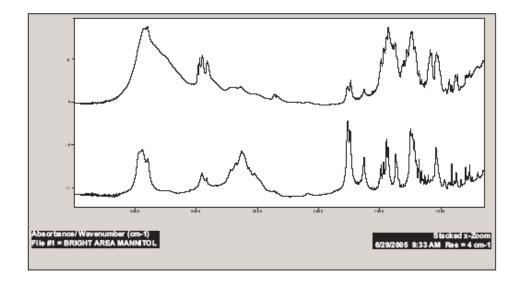


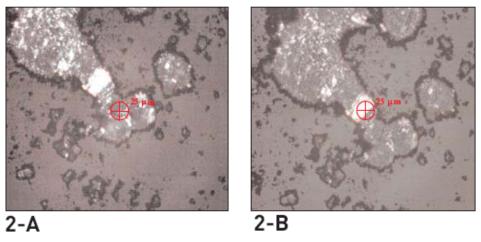
# Polarized light microscopy


### Birefringent materials



Synthetic nylon


Natural cotton


# PLM images



# FTIR microscopy

- E.g. of suspected heroin seizure
- Dark areas give heroin IR signal
- Light area gives mannitol signal
  - Common sugar





# FTIR microscopy



Figure 3.
Micrograph of crystals
formed when AuCl3 is
added to cocaine.
This is a common
crystalline test for
cocaine.

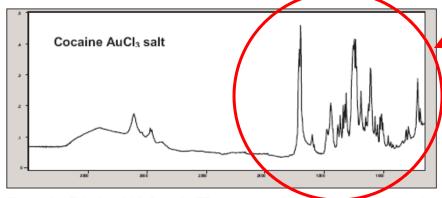



Figure 4. This is mid-infrared ATR spectrum of the crystal formed by the reaction of gold chloride with cocaine.

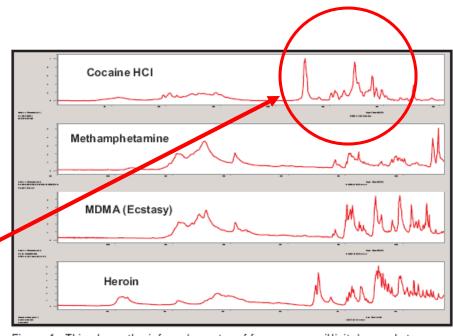
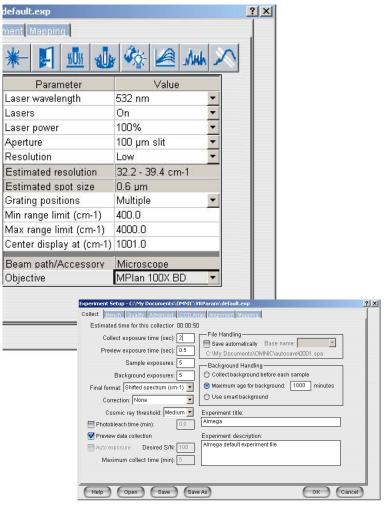
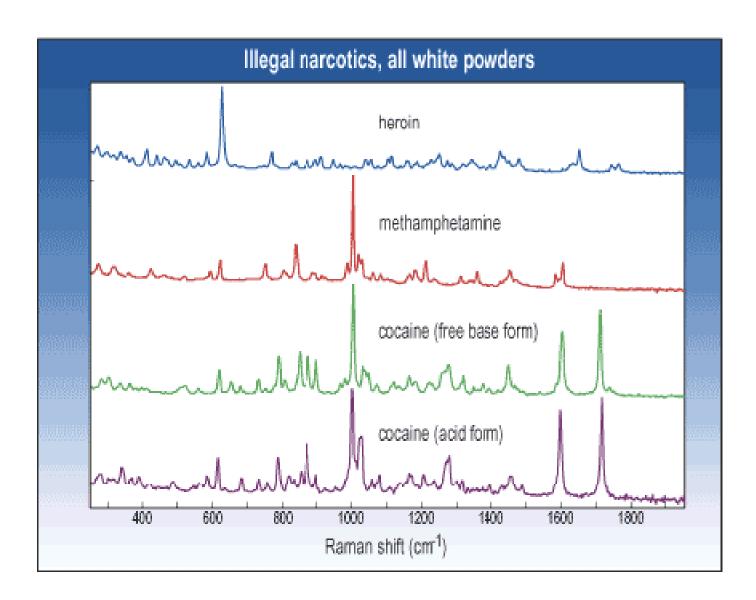
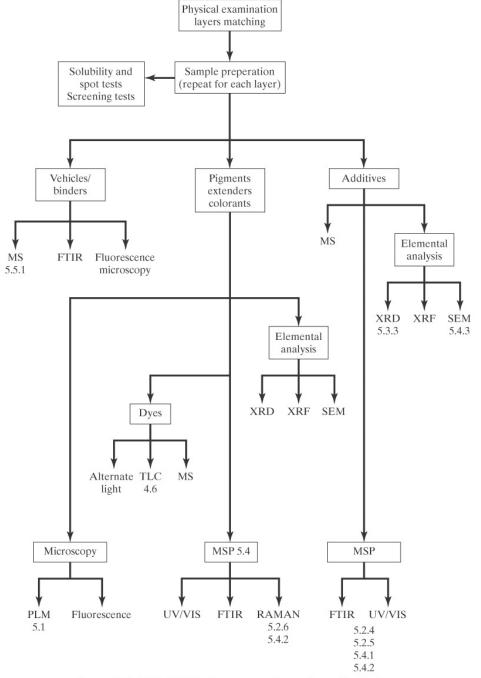




Figure 1. This shows the infrared spectra of four common illicit drug substances.


# Raman Microscopy

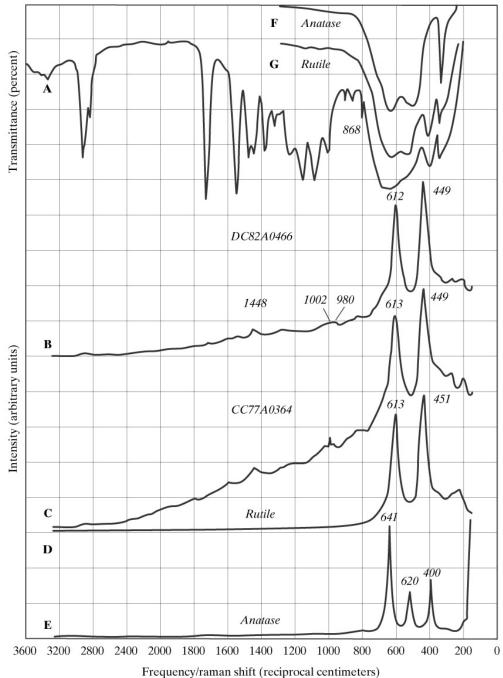
Thermo Nicolet Almega XR






http://www.thermoscientific.com/ecomm/servlet/productscatalog\_11152\_L 11024\_91245\_-1\_4 8



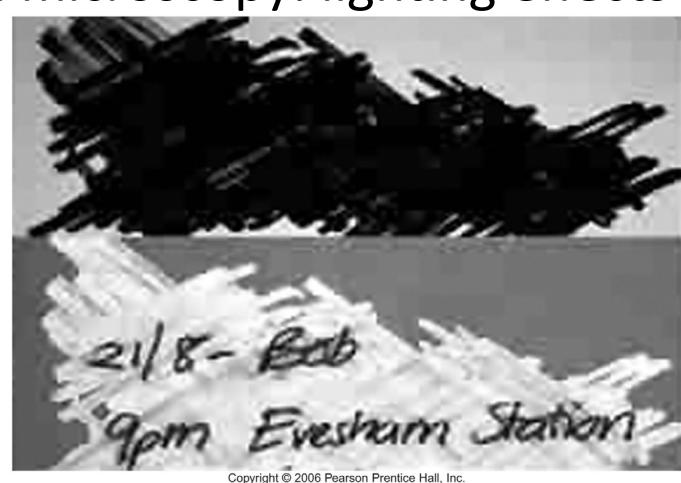

All information and images contained in this web site are Copyright © 1998-2012 InPhotonics, Inc. All rights reserved

### Paint and ink analysis

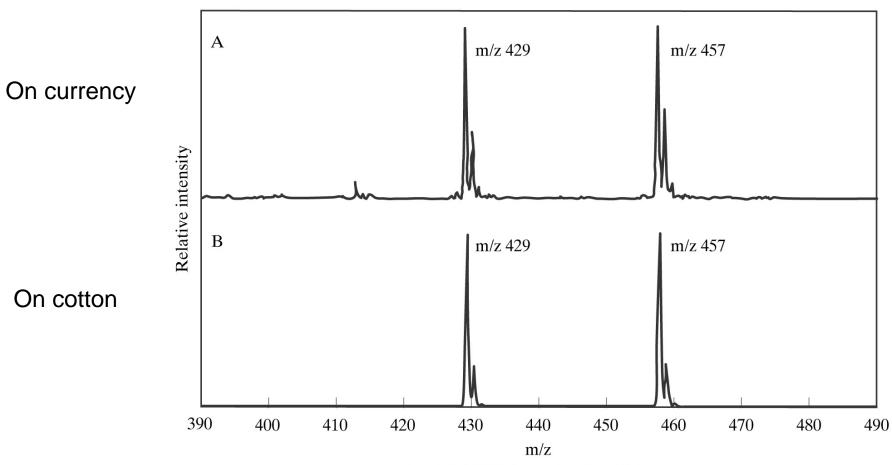


Copyright © 2006 Pearson Prentice Hall, Inc.

# IR and Raman for paints

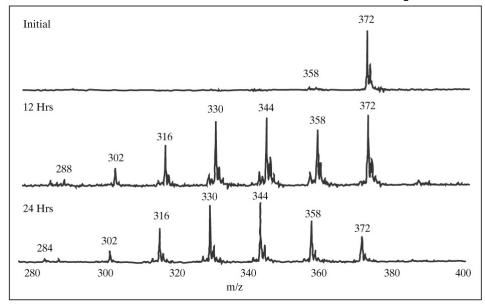


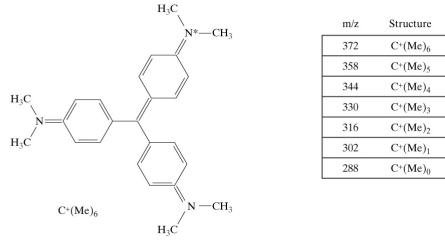

Copyright © 2006 Pearson Prentice Hall, Inc.


# Optical microscopy: lighting effects

Near IR lighting

Mid IR lighting

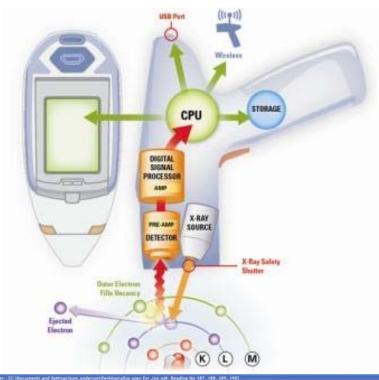


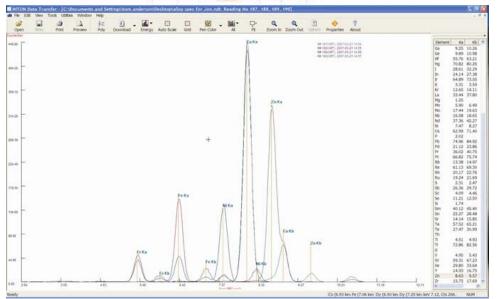


# LDI-MS of inks



Copyright © 2006 Pearson Prentice Hall, Inc.

# LDI-MS of inks after UV exposure




Copyright © 2006 Pearson Prentice Hall, Inc.



**Analytik Now Offering Handheld FTIR Spectrometers from Agilent** 









Art and Artefacts with the Thermo Scientific Niton XRF Analyser

Lignin